Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins.

نویسندگان

  • Gary M Jenkins
  • L Ashley Cowart
  • Paola Signorelli
  • Benjamin J Pettus
  • Charles E Chalfant
  • Yusuf A Hannun
چکیده

Recent studies are beginning to implicate sphingolipids in the heat stress response. In the yeast Saccharomyces cerevisiae, heat stress has been shown to activate de novo biosynthesis of sphingolipids, whereas in mammalian cells the sphingolipid ceramide has been implicated in the heat shock responses. In the current study, we found an increase in the ceramide mass of Molt-4 cells in response to heat shock, corroborating findings in HL-60 cells. Increased ceramide was determined to be from de novo biosynthesis by two major lines of evidence. First, the accumulation of ceramide was dependent upon the activities of both ceramide synthase and serine palmitoyltransferase. Second, pulse labeling studies demonstrated increased production of ceramide through the de novo biosynthetic pathway. Significantly, the de novo sphingolipid biosynthetic pathway was acutely induced upon heat shock, which resulted in a 2-fold increased flux in newly made ceramides within 1-2 min of exposure to 42.5 degrees C. Functionally, heat shock induced the dephosphorylation of the SR proteins, and this effect was demonstrated to be dependent upon the accumulation of de novo-produced ceramides. Thus, these studies disclose an evolutionary conserved activation of the de novo pathway in response to heat shock. Moreover, SR dephosphorylation is emerging as a specific downstream target of accumulation of newly made ceramides in mammalian cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption.

Complex sphingolipids are 'built' on highly bioactive backbones (sphingoid bases and ceramides) that can cause cell death when the amounts are elevated by turnover of complex sphingolipids, disruption of normal sphingolipid metabolism, or over-induction of sphingolipid biosynthesis de novo. Under normal conditions, it appears that the bioactive intermediates of this pathway (3-ketosphinganine, ...

متن کامل

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a sub...

متن کامل

ORMDL proteins regulate ceramide levels during sterile inflammation.

The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM...

متن کامل

Coordination of Rapid Sphingolipid Responses to Heat Stress in Yeast

The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system. Here we analyze the heat stress r...

متن کامل

Ceramide Mediates Vascular Dysfunction in Diet-Induced Obesity by PP2A-Mediated Dephosphorylation of the eNOS-Akt Complex

Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 45  شماره 

صفحات  -

تاریخ انتشار 2002